
© 2002 International Institute of Infonomics, University of Maastricht

Free/Libre and Open Source
Software:

Survey and Study

FLOSS

Deliverable D18: FINAL REPORT

Part V: Software Source Code Survey

Rishab Aiyer Ghosh

Gregorio Robles

Ruediger Glott

International Institute of Infonomics

University of Maastricht, The Netherlands

June 2002

© 2002 International Institute of Infonomics, University of Maastricht

The original version of this document is available at

http://www.infonomics.nl/FLOSS/report/

© 2002 International Institute of Infonomics, University of Maastricht 2

Table of Contents

1.1. Free software developers: a starting point for measurement 3

1.1.1. How software tells its own story .. 3

1.1.2. What may be inferred .. 4

1.2. What is in the source: extracting data from source code.................. 5

1.2.1. Authorship information.. 5

1.2.2. Size and integrity... 7

1.2.3. Code dependency between packages.. 8

1.3. Conclusion and practical considerations ..10

1.3.1. State of current data and tools ...10

1.4. Authors’ Contribution to OS/FS Projects12

1.4.1. Authored Code ...12

1.5. Project Size ...17

1.5.1. OS/FS Project Structure by Size and Number of Authors..........17

1.5.2. Structure of Authors’ Contributions to OS/FS Projects20

List of Figures

Figure 1: Authored Software Code...13
Figure 2: Software Source Code Authorship by Decile ...14
Figure 3: Number of Authors contributing at least 20% to projects...15
Figure 4: Number of Authors contributing at least 20% to projects...16
Figure 5: OS/FS Projects by Size ...18
Figure 6: OS/FS Projects by Number of Authors...19
Figure 7: Number of contributing authors by project size..20
Figure 8: Contributions of single authors to projects by project size21

© 2002 International Institute of Infonomics, University of Maastricht 3

1.1. Free software developers: a starting point for measurement

In the past two years there have been some surveys conducted, of users as well

as developers, though usually on fairly small samples and far from comprehensive.

No survey actually looks at what is perhaps the best source of information on free

software – the source code itself. This was attempted first as an experiment in late

1998 and then published after more work as the Orbiten Free Software Survey in May

20001. Although there have since been other surveys of authorship2 and many of the

relatively recent web sites that provide an environment for open source development

such as SourceForge provide some statistics, none of these adopt the approach of

looking at the free software community from the bottom up. With the result that

simple facts, such as the number of individual developers contributing to free software

projects, an indicative number of such projects and their size were unknown.

1.1.1.How software tells its own story
The Orbiten Survey took advantage of one of the key features of the software

development community. In contrast to other “cooking pot markets” on the Internet

such as newsgroups and discussion forums, much of the activity around is precisely

recorded. The “product” – software – is by nature archived. Since source code is

available, the product is open to scrutiny not just by developers, but also by

economists. Arguably all economic activity: production, consumption and trade – in

the Internet’s cooking-pot markets is all clearly documented, as it is by nature in a

medium where everything can be – and much indeed is – stored in archives.

The difference between software and discussion groups – where too the

“product”, online discussions, is available in archives – is that software is structured.

To understand what is going on in a discussion group, one might need to read the

discussions, which is quite complicated to do in an automated fashion. However,

reading and understanding software source code is by definition something that is

very easily done by a software application.

Software source code consists of at least three aspects that are useful for

economic study. It contains documentation – the least structured of all the data here,

since it is written in a natural language such as (usually) English. This provides

1 Ghosh & Ved Prakash, 2000
2 WIDI 2000; Jones 2002

© 2002 International Institute of Infonomics, University of Maastricht 4

information on among other things the authorship of the software. Headers are called

different things in different programming languages but perform the same function, of

stating dependencies between the software package under scrutiny and other software

packages. Finally, the code itself provides information on the function of the software

package. As an automated interpretation of this is exactly what happens when the

program is compiled or run, there may be far too much information there to be

usefully interpreted for an economist’s purpose. But it is possible to have an idea of

the importance or application domain of the code in some subjective (if well-defined)

sense – it works with the network, say, or has something to do with displaying

images.

Naturally these categories are not sharply divided – indeed most authorship

information for individual components of a software package may be present through

comments in the code, which fits, for current purposes, the category of

documentation.

There are formalized procedures for authors to declare authorship for entire

packages on certain repositories and archives, but such information needs to be treated

carefully too. The data may be reliably present, but its semantics are variable. Usually

such “lead authors” hold responsibility for coordination, maintenance and relations

with a given repository, but data on other collaborating authors – let alone authorship

of individual components – may be entirely missing. On the other hand such detailed

data are usually present in the source code itself.

1.1.2.What may be inferred
There is little point doing a small “representative” survey since results are

meaningless unless very large amounts of software are processed. Given the data at

hand, and the degree of structural complexity for automation – there is a cornucopia

of interesting findings to be made. At the very simplest, a map of author contribution

can be made, resulting in an indicator of the distribution of non-monetary “wealth” or

at any rate production. This is in theory simple to do – count the lines of code and

attribute that figure to the author(s) with the nearest claim of credit.

More complicated is to look for links between projects and groups of projects,

as well as links between groups of authors. The former can be done by looking for

dependencies in the source code – references from each software package to other

software packages. The latter is inferred through the identification of authors who

© 2002 International Institute of Infonomics, University of Maastricht 5

work on the same project or group of projects. Of course both these indicators refer to

one another – projects with related authors are in some way related projects; authors

of a project that depends on another project are in a way dependent on that other

project’s authors.

Measuring such dependencies and interrelationships can provide an insight

into the tremendous and constant trade that goes on in the free software cooking-pot

markets, and can probably also provide an indicator of the relationship with

commercial software and the (monetary) economy at large. Finally, the value of all

such parameters can be applied over the fourth dimension, either using a simple

chronology of time, or the virtual chronology of multiple versions of software

packages, each of which replaces and replenishes itself wholly or in part as often as

every few weeks.

1.2. What is in the source: extracting data from source code

We proceed to look further into the details and format of empirical data that

can be extracted through a primarily automated scan of software source code. The

degree (and reliability) of extractability, as it were, depends on the type of data

extracted. These fall into four broad categories.

• Authorship information for source at the sub-package/component level

• Size and integrity information for source code at the package level3

• The degree of code dependency between packages

All these data can also be collected chronologically, i.e. over different versions

of source code or of source packages at different points in time.

1.2.1.Authorship information
Authorship information is perhaps the most interesting yet least reliable of the

data categories. Although most FOSS developers consider marking source code

they’ve written as important4 they apparently do not take sufficient care to do so in a

consistent manner. Claiming credit is usually done in an unstructured form, in natural-

language comments within source code, posing all the problems of automated analysis

3 a package, loosely defined, is several files distributed together. Usually a package can be reliably

dated to a specific version or release date. Sub-packages are the individual files or collections of
files at the next lower level(s) of the distribution directory structure

4 According to the FLOSS developer survey, 57.8% consider it “very important” and a further 35.8%
don’t consider it “very important” but claim to mark their code with their names anyway; see
http://floss1.infonomics.nl/stats.php?id=31

© 2002 International Institute of Infonomics, University of Maastricht 6

of documentation. Several heuristics have been used, however, to minimise

inaccuracies and are described further in the technical documentation for the software

scanning application CODD5.

Particular issues or biases that have not yet been fully resolved include several

cases of “uncredited” source code. This is either a result of carelessness on the part of

authors, or in some cases, a matter of policy. Developers of the web server Apache6,

for instance, do not sign their names individually in source code. A large amount of

important source code is the copyright of the Free Software Foundation, with no

individual authorship data available7. However, these specific situations do not affect

the integrity of the data in general. Indeed, in general this method of determining

authorship by examining the source code itself shares (some of) the bias of alternative

methods towards crediting lead authors, as many authors who contribute small

changes here and there do not claim credit at all, handing the credit by default to lead

authors.

On the other hand, this bias is possibly balanced by a bias introduced towards

the other side by the CODD heuristics, which usually give equal credit to multiple

authors when they are listed together with no identifiable ranking information (thus

narrowing the difference between a lead author and a minor author in case they are

listed jointly).

Alternative methods

There are alternative methods of assessing authorship of free/open source

software. Typically, they are based on more formal methods of claiming credit. In the

Linux Software Map, for example, it is usually a single developer who assumes the

responsibility for an entire package or collection of packages that are submitted to an

archive. On collaborative development platforms such as SourceForge, similar

methods are used; specific authors start projects and maintain responsibility for them.

With these methods, assessing authorship is limited to collating a list of “responsible”

authors. Clearly the semantics of authorship here are quite different from what we

5 Designed by Rishab Ghosh and Vipul Ved Prakash, and implemented by Vipul Ved Prakash. The

first version of CODD was created in 1998 and the name was an acronym, the expansion of which
we cannot recall, though it was possibly “Concentration of Developer Distribution”. See also
http://orbiten.org/codd/

6 www.apache.org
7 Several authors formally assigned their copyright to the FSF in order to protect themselves from

liability and increase the enforceability of copyright. Assignment records are not yet available for
access to academic research.

© 2002 International Institute of Infonomics, University of Maastricht 7

have previously described, since “responsible” authors may be responsible for

maintenance without actually authoring anything, and in any case there are several

contributors who are left out of the formal lists altogether. Thus, any attempt at

identifying clusters of authors is likely to fail or suffer considerable bias.

A more detailed and less biased (but also less formal) method of author

attribution is used by developers themselves during the development process. Either

through a version-control system, such as CVS or Bitkeeper8, or simply through a

plain-text “ChangeLog” file, changes are recorded between progressive versions of a

software application. Each change is noted, usually with some identification of the

person making the change – in the case of a version control system this identification,

together with the date, time and size of change is more or less automatically recorded.

However, again the semantics vary – most projects limit to a small number the people

who can actually “commit” changes, and it is their names that are recorded, while the

names of the actual authors of such changes may or may not be.

Naturally, no method is perfect, but the purpose of the above summary is to

show that formal author identification methods do not necessarily provide much

additional clarity into the nature of collaborative authorship, while introducing their

own biases. (However, CODD is being adapted to process CVS/Bitkeeper records as

well.)

1.2.2.Size and integrity
There are many ways to value the degree of production a specific software

package represents. Especially when it does not have a price set on it, the method of

choosing an attribute of value can be complex. One value, which makes up in its

completely precise, factual nature what it may lack in interpretability is size. The size

of source code, measured simply in bytes or number of lines, is the only absolute

measure possible in the current state of F/OSS organisation and distribution.

Specifically, measuring the size of a package, and the size of individual contributions,

allows something to be said about the relative contributions of individual authors to a

package, and of the package to the entire source code base. It may also be possible to

impute time spent in development or some a monetary value based on size, although

we do not attempt to do so.

8 CVS: Concurrent Versions System, http://www.cvshome.org; Bitkeeper: http://www.bitkeeper.com

© 2002 International Institute of Infonomics, University of Maastricht 8

In any case, in order to calculate the size of a package it is important to try to

ensure its integrity. A given package – especially on development platforms – usually

includes derivative or “borrowed” works that have been written separately by other

developers, but may be required in order to for the package to run. These are not

necessarily identified as “borrowed” and could, in theory, be counted twice.

Furthermore, they can artificially inflate the apparent contribution of an author of a

“borrowed” work. CODD tries to resolve this by identifying duplicate components

across the entire scanned code base and allocating them to only a single package

wherever possible. This promotes integrity and avoids double-counting, and also

provides information useful for finding dependencies between packages, by replacing

“borrowed” works with external references to those works.

1.2.3.Code dependency between packages
Since software is by nature collaborative in functioning, software packages

usually depend on features and components from several other packages. Such

dependencies must be explicitly detailed in a way that they can be determined

automatically, in order for an application to run. As such, these dependencies can be

identified through automatic scanning; indeed there are several developers’ tools that

serve this purpose. Such tools normally provide (of necessity) a high level of detail

regarding dependencies (i.e. at a function call level) well beyond the present purposes

of analysis. Author credit information is rarely available at anything more detailed

than file level, so it makes little sense to determine dependency information at a more

detailed level. Moreover, such detailed analysis would be computationally

exceptionally hard to perform for 30,000 software packages!

It was decided therefore to implement original but (relatively) uncomplicated

heuristics to identify dependencies at the package level. One method is to retain

information on duplicate files and interpret that as dependency information: if

package P contains a file that has been “borrowed” from package Q where it

originally belongs, P is dependent on Q.

Another method is based on header files. As described earlier, headers (called

different things in different programming languages) define interfaces to functions,

© 2002 International Institute of Infonomics, University of Maastricht 9

the implementations of which are themselves embodied in code files9. In order to

access externally defined functions, a code file must typically include10 a declaration

for it, typically in the form of a statement including a header file. This is treated by

CODD as an external reference. Various heuristics are used to identify, wherever

possibly, the package where header file functions are actually implemented, and

external references are resolved, wherever possible, as links from one package to

another.

This process is quite complex given the unstructured nature of a large source

base containing several possibly incompatible packages (i.e. which have not been

designed to be installed together or run on the same system). Nevertheless, it can scale

to a very large code base (tested so far on 30 gigabytes of software, over 22,000

packages), and it results in a relatively coherent map of code dependencies between

individual packages. In the current stage of analysis, however, tabular dependency

information is not converted into the format of a graph, although that would make

analysis of clusters of dependency easier. Arguably a small package that is required

by several others is more valuable than a large package without dependents, so further

analysis of dependency information is very useful in order better to gauge the value

distribution of packages. Moreover, it is possible to identify clusters of projects based

on their interdependence, in addition to the clusters of projects based on common

authorship.

A summary of the stages described so far is presented in table 2 below.

Method Explanation Resulting data
Authorship credits Heuristics for determining and

assigning authorship of code
segments at the file or package level.

List of the form {author,
contribution in bytes of code}
generated for each package

Duplicate file resolution Many files are included in several
packages, intentionally or by mistake.
This results in double counting (a file
is credited to its author multiple
times, ones for each package where it
occurs). Various heuristics are used
to try and resolve this problem

Corrected version of authorship
credit list. List of shared files for
each package.

Dependency identification Files in one package may link to files
in other packages. Heuristics are used
to try and identify these links and also

For each package, a list of
linked or “borrowed” files
together with the names of their

9 For the C/C++ programming languages, which amount for the largest proportion of general-purpose

F/OSS, files ending with “.h” or “.hpp” are headers and those with “.c” or “.cpp” contain
implementation code.

10 Using the #include command in C/C++ source code, and other methods in other programming
languages.

© 2002 International Institute of Infonomics, University of Maastricht 10

identify where possible, in the case of
duplicate files, which is the “owner”
package and which is the
“dependent” one

“owner” packages based on
identifiable information.

Table 2: Summary of stages of source code analysis and resulting data format

1.3. Conclusion and practical considerations

This paper has so far described in some detail a proposed methodology to

extract and interpret empirical data out of software source code The first large-scale

application of the more sophisticated methods is presented below, with some

conclusions and practical considerations based on a preliminary analysis of the

application of this methodology on a large scale.

1.3.1.State of current data and tools
Existing data is a result of running the various tools described above on a very

large base of software, 30 Gigabytes of compressed source code, i.e. approximately 3

billion lines. Partly due to the scale of this code base, the analysis is carried at a fairly

high level in that packages are rather large and not broken down into smaller sub-

packages (the Linux kernel, for instance, is treated as a single – albeit large – package,

which means that dependencies or clusters are not identified for kernel components or

sub-packages). Additionally, existing data is for current available versions without

any historical data or chronological analysis.

Current analysis tools are entirely non-interactive software and fairly technical

– i.e. they are not user-friendly to operate and need programmer skills for

customisation tasks. The analysis does not provide graphical or visualization output,

and there are at present no software tools as part of this project that perform

chronological analysis. However, the development of such tools may not be necessary

if it turns out that analysis of historical trends, say, is practical with the application of

standard statistical analysis packages to data as currently generated. So far, this has

seemed impractical – the difficulty of dealing with a graph of over 23,000 projects

and 36,000 authors in a statistical package was one of the initial reason to develop

customised methods and tools.

A preliminary evaluation of the methodology in practice must, however, be

positive. It is perhaps unsurprising (but previously impossible to prove) that F/OSS

projects are highly interconnected, with large amounts of code dependency and reuse.

© 2002 International Institute of Infonomics, University of Maastricht 11

It will take some experimentation, together perhaps with visualisation techniques, to

tailor the tools to generate clusters of manageable sizes that can be compared with one

another as distinct groupings. This is essential in order to make full use of the

available data, by integrating the code dependency information with the clusters of

authorship to determine the dependencies between distinct groups of authors on one

another. However, this is beyond the scope of the FLOSS project.

If performed over multiple versions or over time, this analysis provides

extremely interesting information on the “trade” between groups, and could be a first

step towards determining the internal economics of the functioning of F/OSS

development.

To conclude, these methods are a first attempt to provide concrete empirical

data and analysis based on the source code – the only hard fact of F/OSS – and extract

the most of what is already ubiquitous, waiting to be studied. Empirical data

extraction from source code should be of great interest to economists and social

scientists – but is also a valuable tool for developers to know about themselves and

their organisation. This perhaps explains F/OSS developers’ continuing interest in

CODD and the Orbiten survey11.

11 The first CODD results in end 1998 received several hundred thousand hits in a few days, as did the

first Orbiten Free Software Survey in May 2000. These only provided author contribution tables,
and for a very small source code base.

© 2002 International Institute of Infonomics, University of Maastricht 12

1.4. Authors’ Contribution to OS/FS Projects

1.4.1.Authored Code

The purpose of this step of the analysis was to find out how the input to OS/FS

projects, i.e. the number of program lines or bytes of source code, is structured. Based

on the CODD-analysis, we present here the data for 31999 software developers

collaboratively developing almost five billion (4.976.559.414) bytes of software

source code.

Figure 1 shows the contributions of the OS/FS authors to the total sum of

analysed software source code, where the order of the authors is ranked by the size of

their contribution. It becomes clearly visible that the contribution is the result of very

unequally distributed inputs from developers.

© 2002 International Institute of Infonomics, University of Maastricht 13

Figure 1: Authored Software Code

It is evident that a few software developers provide a large share of the

software code, which is embodied by the almost vertical part of the curve on the left.

Other than these very active developers, the contributions of the others decreases

gradually in a smooth curve.

This result becomes clearer if we look on the distribution of the analysed

software code authorship by deciles (figure 2).

Number of bytes per author (log scale)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000
1

10
01

20
01

30
01

40
01

50
01

60
01

70
01

80
01

90
01

10
00

1
11

00
1

12
00

1
13

00
1

14
00

1
15

00
1

16
00

1
17

00
1

18
00

1
19

00
1

20
00

1
21

00
1

22
00

1
23

00
1

24
00

1
25

00
1

26
00

1
27

00
1

28
00

1
29

00
1

30
00

1
31

00
1

Number of bytes per author

© 2002 International Institute of Infonomics, University of Maastricht 14

Figure 2: Software Source Code Authorship by Decile

The input provided by the first decile (i.e. the top 10% developers) makes up

almost three quarters (74%) of the whole amount of software code that is scrutinized

here. The second deciles provides another 11%, and the third deciles adds again

roughly 3% of the whole software source code. Thus, deciles 4 to 10 provide each less

than 1% of the whole sum of software source code.

A small part of this can be explained by the fact that some of the “authors” at

the very top (i.e. in the top 10 or so) are not actually individual authors but

organizations such as the Free Software Foundation, as in many cases source code

copyright is held by such an organization with absolutely no individual authorship

information available. However, this does not explain most of the result, which must

be simply due to the fact that the organization of collaborative OS/FS development

really is quite top-heavy.

For more insight into the structure of contributions to OS/FS projects by

individual authors, we utilized two thresholds to differentiate contributions further.

The first was set at a level of at least 20%, the second at a level of at least 40%, both

© 2002 International Institute of Infonomics, University of Maastricht 15

figures representing amounts contributed towards any given project. Only 39% of the

author sample passed the 20%-threshold in at least one complete software project, and

only 17% passed at least once the 40%-threshold.

9592 (76%) of the 12584 authors who passed the 20%-limit passed this

threshold only in one project, 1697 (14%) contributed at least 20% of the software

code to two projects, 930 (7%) to three to five projects, and 257 (2%) reached this

threshold in six to ten projects (figure 3). Only 108 OS/FS developers (1%)

contributed at least 20% of the software source code to more than ten projects.

Figure 3: Number of Authors contributing at least 20% to projects

Considering only those developers who contributed at least 40% of the

software source code of at least one OS/FS project, we find following distribution:

6877 (79%) contributed this share to only one project, 1058 (12%) to two projects,

572 (6.5%) to three to five projects, 153 (1.8%) to six to ten projects, and 48 (0.7%) to

more than ten projects (figure 4).

108257

930

1697

9592

1 project
2 projects
3-5 projects
6-10 projects
More than 10 projects

© 2002 International Institute of Infonomics, University of Maastricht 16

Figure 4: Number of Authors contributing at least 20% to projects

This distribution of authorship contribution indicates that most authors

contribute large proportions of source code to their own individual projects, or

projects with the collaboration of a small number of other people, and in addition to

that contribute relatively small amounts of code to larger projects.

This finding seems to be supported by an analysis of the distribution of

projects among authors, as shown in the next section.

153

6877

1058

572

48

1 pro ject

2 pro jects

3-5 pro jects

6-10 p ro jects

More than 10 pro jects

© 2002 International Institute of Infonomics, University of Maastricht 17

1.5. Project Size

1.5.1.OS/FS Project Structure by Size and Number of Authors
Beyond authors-based analysis, we look at data from the perspective of the

projects. This examination comprises 16905 OS/FS projects, ranging from a minimum

size of 69 to a maximum of 97379040 bytes of software source code. The average size

(mean) of these projects is 346403.2 bytes, and on average 5.1 authors contribute to a

project. However, if we consider the median values, which indicate the point where

the distribution is divided into two equally large parts of the sample, we find that the

distribution is, again, very one-sided. The median value for the average size of the

project is only 53430 bytes, i.e. only one sixth of the mean value. The median value

for the number of authors contributing to a project is 2. A large majority of OS/FS

projects are small, far below the mean of 346403.2 bytes and 5.1 authors.

Figure 5 and Figure 6 illustrate this structure of OS/FS projects. 17% of the

projects are smaller than 10,000 bytes, 13% lie within a range of 10,000 and 20,000

bytes, and another 19% reach a size of 20,000 to 50,000 bytes (Figure 5). Thus,

almost half of the projects do not reach 50.000 bytes of software source code and

remain far below the mean size. 14% of the projects have a size of 50,000 to 100,000

bytes, another 14% have a size of 100,000 to 200,000 bytes, and almost 13% of the

projects are between 200,000 and 500,000 bytes. Only 13% of the projects are larger

than 500,000 bytes, and it is worth noting that only 1% of the projects are very large,

i.e. above 5,000,000 bytes.

© 2002 International Institute of Infonomics, University of Maastricht 18

Figure 5: OS/FS Projects by Size

Figure 6 shows that the majority of OS/FS projects is worked on by only one

or two software developers. Still, a considerable number of projects consist of three to

six authors. Then, the number of authors per project decreases gradually, and we

hardly find any projects at all that are performed by more than 20 software

developers.12

12 “0” authors in figure 2 does not mean that there were no authors at all, but that in these cases the

number of authors could not be specified by the CODD analysis.

8.1

8.8

6.9

5.6

11.6

7.6

14.2

12.2

12.5

5.9

6.7

< 5,000 Bytes

5,001-10,000 Bytes

10,001-15,000 Bytes

15,001-20,000 Bytes

20,001-35,000 Bytes

35,001-50,000 Bytes

50,001-100,000 Bytes

100,001-200,000 Bytes

200,001-500,000 Bytes

500,001-1,000,000 Bytes

More than 1,000,000 Bytes
Pr

oj
ec

t S
iz

e

% of projects

© 2002 International Institute of Infonomics, University of Maastricht 19

Figure 6: OS/FS Projects by Number of Authors

Figure 7 illustrates the relation between project size and the number of authors

that contribute to it. Not surprisingly, as a general tendency we find the number of

authors contributing to a project increasing with the size of the project. The scope of

projects that are predominantly performed by only one author ranges from a size of 69

up to 20,000 bytes of software source code. Within this scope, we also find

extraordinarily high shares of projects that are performed by two developers, but here

the core ranges from projects of 5,000 to 50,000 bytes of software source code.

Between projects of 20,000 and 200,000 bytes of software source code we find

several projects that are performed by three developers, while projects performed by

four authors are common within a range from 50,000 to one million bytes of software

source code. Seven to twenty authors start collaborating on projects as small as

200,000 bytes of software source code, while more than 20 developers are typically

found in projects from a size of 500,000 bytes of software source code onwards.

4803

4108

2210

1342

825

1672

790

447

109

28

7

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

42
50

45
00

47
50

50
00

1

2

3

4

5

6 to 10

11 to 20

21 to 50

51 to 100

101 to 500

>500

N
um

be
r o

f A
ut

ho
rs

 p
er

 P
ro

je
ct

Number of OS/FS Projects

© 2002 International Institute of Infonomics, University of Maastricht 20

Figure 7: Number of contributing authors by project size

1.5.2.Structure of Authors’ Contributions to OS/FS Projects
This structure is also reflected in the fact that in 94.4% of all projects we

found a contribution of at least 10% of the project source code provided by a single

author, in 90.4% of all projects we find at least 20% of the source code provided by a

single author, and in three quarters of all projects we find a contribution of 40% of the

whole software source code from one author alone (cf. the totals in Figure 8). The

expected tendency of an increase in the number of authors along with increasing

project size is also reflected I in Figure 8 by the decreasing shares of 40% single-

author contributions to a project as the project size increases. However, even in the

category of the largest projects we find that in almost half of them there is an author

who has contributed at least 40% of the whole software code.

This supports the conclusion that projects are often originated by a single

author and that author’s contribution remains crucial even as the project grows,

attracting several more contributors.

54.9

46.1

41.6

41.9

36.6

29.7

26.7

20.2

10.9

6.5

3.1

28.4

25.3

32.6

32.5

30.2

30.6

30.9

28.3

22.7

15.4

10.6

3.7

24.3

25.3

32.6

32.5

30.2

30.6

30.9

28.3

22.7

15.4

10.6

3.7

24.3

8.9

11.7

12.8

14.7

16.3

16.8

16.0

14.2

13.6

8.8

3.7

13.1

5.4

6.2

8.0

8.0

11.4

15.3

19.3

26.3

29.4

20.7

13.6

16.2

4.3

6.4

12.3

24.2

39.3

36.9

11.2

10.6

34.8

< 5,000 Bytes

5,001-10,000 Bytes

10,001-15,000 Bytes

15,001-20,000 Bytes

20,001-35,000 Bytes

35,001-50,000 Bytes

50,001-100,000 Bytes

100,001-200,000 Bytes

200,001-500,000 Bytes

500,001-1,000,000 Bytes

More than 1,000,000 Bytes

Total

Pr
oj

ec
t S

iz
e

% of projects by written by:

1 2 3 4-6 7-20 More than 20 authors

© 2002 International Institute of Infonomics, University of Maastricht 21

Figure 8: Contributions of single authors to projects by project size

87.1

86.4

83.0

82.2

80.7

78.6

78.0

69.5

67.1

59.3

48.3

74.9

94.0

95.5

93.4

93.0

93.0

92.7

91.8

88.4

88.1

85.1

76.7

90.4

95.2

96.6

94.5

94.7

96.2

95.8

95.3

94.1

93.7

92.3

87.1

94.4

< 5,000 Bytes

5,001-10,000 Bytes

10,001-15,000 Bytes

15,001-20,000 Bytes

20,001-35,000 Bytes

35,001-50,000 Bytes

50,001-100,000 Bytes

100,001-200,000 Bytes

200,001-500,000 Bytes

500,001-1,000,000 Bytes

More than 1,000,000 Bytes

Total

Pr
oj

ec
t S

iz
e

% of Projects with a single author contributing at least:

40% 20% 10% of the project code

